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Abstract— A common solution for estimating a probability
mass functionw when given a prior pmf q and a linear constraint
Aw = b is to minimize the relative entropy betweenw and q
subject to the linear constraint. In such cases, the solutionw
is known to have exponential form. We consider the case that
the linear constraint is noisy, uncertain, infeasible, or otherwise
“soft.” A solution can be obtained by minimizing both the
relative entropy and the distortion betweenAw and b. A penalty
parameter σ weights the relative importance between these two
objectives. We show that this penalty formulation also yields a
solution w with exponential form. If the distortion is based on
an `p norm, then the exponential form of w is shown to have
exponential decay parameters that are bounded as a function
of σ. We also state conditions under which the solutionw to
the penalty formulation will result in zero distortion, so that the
linear constraint Aw = b holds exactly. These properties are
useful in choosing penalty parameters, evaluating the impact
of chosen penalty parameters, and proving properties about
methods that use such penalty formulations.

Index Terms— relative entropy, Kullback-Leibler distance,
maximum entropy, penalty formulation, inverse problem, convex
optimization, exact penalty function, moment constraint

I. I NTRODUCTION

CONSIDER the problem of estimating a probability mass
function (pmf)w ∈ Rk given a strictly positive priorq ∈

Rk. A common restriction onw is a mean constraint, so that if
there arek observationsA = [a1, . . . , ak] ∈ Rd×k and a mean
b ∈ Rd, thenw must satisfyAw = b. A standard approach [1],
[2], [3] is to minimize the relative entropy function

I(w; q) =
k∑

j=1

wj log
wj

qj
(1)

over the constrained probability simplex

1T w = 1, w ≥ 0, (2)

Aw = b, (3)

where the symbol1 denotes a vector of ones; its length is
determined by context. Often the priorq is the uniform distri-
bution (i.e.,qi = 1/k for eachi = 1, . . . , k); the minimization
of (1) is then equivalent to maximizing entropy [4], [5], [6].
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We recognize that the data may be noisy or uncertain; or the
constraints (2)–(3) may beinfeasibleand admit no solution.
A more appropriate estimate ofw may then be the solution to

minimize
w

I(w; q) + σD(Aw − b)

subject to 1T w = 1, w ≥ 0,
(4)

whereD : Rd → R is a convex function that measures the
distortion in satisfying (3), andσ is a positive scalar that can
be used to balance the tradeoff between minimizingI(w; q)
and D(Aw − b). The parameterσ can be set in response
to expected noise in measurements ofA or b and may be
set differently depending on the units of measurement of the
distortion function compared with the bits of relative entropy.

In this paper we characterize the analytic form of the
minimizer of (4). We show that for any convex distortionD,
the solution has an exponential form. Moreover, for a family
of distortion functions based on the`p norm, the parameters of
the exponential solution can be further characterized: the rate
of decay is bounded by a function ofσ. These results extend
the work of Campbell [7], who assumed a scalar feature space
(i.e.,d = 1), andD as thè 1 distortion on the mean constraint,
so thatD(Aw − b) = ‖Aw − b‖1.

The exponential form of the solutions to constrained min-
imum relative entropy problems has been known for many
years. Proof of an exponential form for a continuous problem
and general constraints can be found in Kullback [2, Theorem
2.1] and Cover and Thomas [4, Chapter 11]. Similar problems
arise in rate distortion theory, and solutions in that framework
have also been shown to have an exponential form. (For an
overview of rate-distortion results, see [4] and [8].)

The results in this paper grant deeper insight into the esti-
mates resulting from problems of the form (4). In particular,
we see how the choice ofσ directly affects the estimate. In
Section IV we show that for a family of distortion functions
D based on thèp norm, a minimizer to (4) will satisfy the
linear constraint exactly for allσ over a finite threshold value.

The bounded exponential decay property shows that the
estimator will weight the observationsai (the columns of
A) so that no observation receives an arbitrarily large or
small relative weight, regardless of the number of observations
or their specific values. Gupta et al. [9] use this bounded
exponential decay property to prove the statistical consistency
of distributions estimated with the linear interpolation with
maximum entropy (LIME) nonparametric statistical learning
algorithm. The LIME algorithm is a neighborhood method that
weights each neighborhood training sample with an adaptive
kernel that solves a problem of the form (4) with a uniform
prior q. Our results presented here show that the form of
the LIME adaptive kernel must be exponential. The bounded
exponential decay given in Theorem 4.2 translates into a bound
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on the ratio between the largest and the smallest components of
the LIME weight kernel. The bounded ratio allows one to state
robust properties about the LIME weight kernel’s behavior
even though the neighborhood training samples (the columns
of A) are random. In particular, the bounded ratio is important
in order to verify Stone’s [10] conditions for the consistency
of any neighborhood learning method.

Inference methods based on minimum relative (or maxi-
mum) entropy with constraints are now classic [11], [2], [12],
[1] and enjoy continuing popularity [13], [3], [14], [15], [16].
There has also been recent interest in approaches that do not
necessarily treat (3) as ahard constraint (see, e.g., [7], [17],
[18]).

The optimization problem (4) isconvex—both I and D
are convex, and the constraints are linear. IfD is continously
differentiable, its convex structure makes it especially suitable
for numerical solution by a variety of interior-point solvers
for nonlinear optimization such as KNITRO [19], LOQO [20],
and MOSEK [21]. Although in practice a numerical solution
can be computed, theoretical understanding of an estimation
method based on (4) relies on a description of how the solution
depends on the problem parameters.

Previously, Campbell [7] gave an analytic solution for the
minimizing pmf of (4) for the scalar case—whenA is a
1 × k matrix andb is a scalar—for thè 1 distortion under
the assumption that the uncertain meanb lies within the range
of the set of eventsmini ai ≤ b ≤ maxi ai. We extend
Campbell’s result in two useful ways. First, the data vectors
can be of arbitrary finite dimension instead of one dimensional,
so that insteadA hasd rows. Second, the meanb need not be
in the convex hull of the data vectors specified by the columns
of A, so that the solution still exists even if the constraints (2)–
(3) are infeasible.

II. T HE EXPONENTIAL FORM

Before we consider the penalty function formulation of the
minimum relative entropy problem, we first examine the case
where the constraints (2)–(3) are imposed explicitly:

minimize
w

I(w; q)

subject to 1T w = 1
Aw = b.

(5)

We have anticipated a strictly positive solutionw∗ and disre-
garded the nonnegativity constraintw ≥ 0, though in practice
they would be explicit.

In this section we establish that the solution of (5) is
exponential; its parameters are the columns ofA and the
Lagrange multipliers associated with the second constraint.
(The Lagrange multipliers of the constraint1T w = 1 can
be eliminated.) As discussed in the introduction, this result is
not new, and it can be derived from a variety of perspectives.
However, it is useful to show a complete derivation so that
we may refer to it later. One elegant approach to derive this
result is to consider the dual of (5) (every convex optimization
problem has a dual). The recent book by Boyd [22] provides
an accessible discussion on this topic.

The optimization problem (5) isconvex; in other words
its objective function is convex, and the equality constraints
are linear. Under a suitableconstraint qualification, such as
Slater’s condition, the first-order optimality conditions of (5)
are in fact both necessary and sufficient (see, for example,
[23], [22]).

Definition 2.1 (Slater’s Condition):There exists a pointw
in the relative interior of the feasible set.

Applied to (5) (and recalling the implicit nonnegativity
constraint onw), Slater’s condition implies that there exists
a w that satisfies

w > 0, 1T w = 1, Aw = b.

Let ζ andy be the Lagrange multipliers associated with the
first and second constraints of (5), respectively. An optimal
point, together with its associated Lagrange multipliers, must
satisfy the Karush-Kuhn-Tucker (KKT) conditions.

Definition 2.2 (First-Order KKT Optimality Conditions):
A triple (w∗, ζ∗, y∗) is a first-order KKT point of (5) if it
satisfies the following conditions:

1T w = 1 (6a)

Aw = b (6b)

∇wI(w, q) + ζ1 + AT y = 0. (6c)

Theorem 2.3:Suppose that Slater’s condition holds. Then
the vector with components

w∗j =
uj∑k

j=1 uj

, (7)

for j = 1, . . . , k, solves (5), where

uj = qj exp(−aT
j y∗), (8)

and y∗ is the Lagrange multiplier corresponding to the con-
straintAw = b.

Proof: By Slater’s condition, the feasible set of (5) is
nonempty. Moreover, the level setsSw0 = {w | I(w; q) ≤
I(w0; q)} are closed and bounded. The strict convexity ofI
therefore implies that there exists a unique solutionw∗ to (5).
Slater’s condition is sufficient to guarantee that there exist
Lagrange multipliersζ∗ andy∗ such that(w∗, ζ∗, y∗) satisfies
the KKT conditions (6).

Note that∇wI(w; q)j = 1 + log(wj/qj). Solve thejth
equation of (6c) forw∗j to obtain

w∗j = qj exp(−ζ∗ − aT
j y∗ − 1). (9)

Sum (9) over allj, and use (6a) to obtain

k∑

j=1

qj exp(−ζ∗ − aT
j y∗ − 1) = 1.

Hence,ζ∗ must satisfy

ζ∗ = log




k∑

j=1

qj exp(−aT
j y∗ − 1)


 . (10)
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Replacingζ∗ in (6c) with (10), and subsequently solving for
w∗j , we arrive at

w∗j =
qj exp(−aT

j y∗)
∑k

j=1 qj exp(−aT
j y∗)

, (11)

as required.

III. PENALTY FORMULATION

It may be that the constraints (2)–(3) are infeasible, or
that the constraintAw = b need not be solved exactly.
For example, the data may be known to be noisy such that
Aw = b + n, wheren is some known or unknown noise; or
the mean constraint may be uncertain; or fidelity to the priorq
may be highly important relative to the constraint. These cases
may be captured by introducing the set of constraintsAw = b
into the objective via a penalty function as done in (4).

In Lemma 3.1 we show that the solution to (4) will have
an exponential form ifD is convex. The simple proof of this
lemma provides an insight: the weights that solve (4) are the
same as the weights that solve (5) with the mean constraint
Aw = b̄ for someb̄.

Lemma 3.1:SupposeD convex. Then there exists a unique
solution w∗ to (4) with components that satisfy (7) and (8)
where y∗ is the Lagrange multiplier corresponding to the
solution of (5) with the constraintAw = b̄, for someb̄.

Proof: Over the compact set defined by the constraints
1T w = 1 andw ≥ 0, D is convex (and therefore continuous)
and I is strictly convex and continuous. Therefore, a unique
minimizer w∗ of (4) exists.

Suppose the unique minimizerw∗ of (4) is known. Let̄b =
Aw∗. Solve (5) with the constraintAw = b̄ for a minimizerw]

(such a minimizer must exist because the constraint is feasible
for w∗). Sincew] solves (5), it satisfies the constraintAw] =
b̄, and thusD(Aw] − b̄) = 0 = D(Aw∗ − b̄).

Further, it must be thatI(w∗; q) = I(w]; q), because if
otherwiseI(w∗; q) < I(w]; q) then w] could not solve (5)
becausew∗ would satisfy the constraintAw∗ = b̄ and
have lower relative entropy. Similarly, assumingI(w∗; q) >
I(w]; q) requires thatw∗ not be the minimizer of (4).

Then sincew∗ satsifies the constraintAw∗ = b̄ and
I(w∗; q) = I(w]; q), it must be a minimizer of (5). Since
w] is defined as the minimizer of (5), and there is a unique
minimizer, thenw∗j must equalw]

j for all j.
From Theorem 2.3,w] has the form defined by (7) and (8),

and thusw∗ must also have the form defined by (7) and (8).

IV. EXACT PENALTY FORMULATION

When the distortion function takes the form

D(Aw − b) = ‖Aw − b‖p, (12)

with 1 ≤ p ≤ ∞, the penalty function formulation (4) is
exact—for a finitely large penalty parameterσ, its solution
has zero distortion, so that the constraint (3) is satisfied
exactly. With an exact penalty function we can construct a
function whose unconstrained optima coincide with the optima

of the constrained problem. Exact penalty functions play an
important role in the modeling of continuous optimization
problems; they have rich theoretical properties, and when
the norm is polyhedral (i.e.,p = 1 or p = ∞), they are
computationally practical because they can be reformulated as
polyhedral constraints. They share the same philosophy with
the more general class of penalty functions: by augmenting
the objective function to include a penalty on the constraint
violation, a constrained (and possibly difficult) problem can
be transformed into an unconstrained (and easier, we hope)
problem. Exact penalty functions were first analyzed by
Pietrzykowski [24], and later by Bertsekas [25], Fletcher [26],
and Han and Mangasarian [27], among others.

For the remainder of this section, let the penalty function
D in (4) be of the form given by (12). Note that the objective
of (4) is convex for any1 ≤ p ≤ ∞; but it is not
everywhere differentiable (i.e., it is onlyC0). When the norm
is polyhedral, (4) can be reformulated as an equivalent and
smooth problem, and in that case, the corresponding first-
order KKT conditions (see Definition 2.2) can be applied
to find optimal solutions. Moreover, a variety of algorithms
for smooth, constrained optimization could then be used to
numerically solve the smooth reformulations. We discuss one
such reformulation forp = 1 in Section IV-C. However, there
exists a rich theory of optimization for nonsmooth functions,
and a result analogous to Theorem 2.3 can be derived for (4)
(see Theorem 4.2).

A. Nonsmooth optimality concepts

We summarize in this section some of the optimality con-
cepts from nonsmooth optimality that we need for our analysis.
Our treatment follows the approach of [26]. The vectorg is a
subgradientof the convex functionf(x) : Rn → R at x if

f(x + p) ≥ f(x) + gT p,

for all p ∈ Rn. The subgradient is normal to a supporting
hyperplane off at x. The set of all subgradients

∂f(x)def= {g | f(x + p) ≥ f(x) + gT p for all p ∈ Rn}
is thesubdifferentialof f at x. Whenf is differentiable atx,
there is only a single supporting hyperplane at that point, and
the subgradient is unique and corresponds to∇f(x).

Definition 4.1 (Nonsmooth First-Order Optimality):A
triple (w∗, ζ∗, y∗) is a first-order optimal point of (4) if it
satisfies the following conditions:

1T w = 1 (13a)

∇wI(w; q) + ζ1 + AT y = 0, (13b)

wherey∗ ∈ ∂(σ‖Aw∗ − b‖p).
Comparing (6) with (13), we see howy∗ ∈ ∂(σ‖Aw∗−b‖p)

may be interpreted as a kind of Lagrange multiplier for the
constraintAw = b implied by the penalty function (12). Note
that for any givenσ, Aw∗ − b may or may not equal zero.

The dual norm is particularly important for the analysis of
exact penalty functions and will be useful in our analysis. For
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any norm‖ · ‖ in Rn, the corresponding dual norm is defined
as

‖y‖D = sup
‖x‖≤1

yT x.

For anyp andq such that1/p+1/q = 1, the`p and`q norms
are dual to each other.

B. Solution of the exact penalty function

Theorem 4.2 shows that penalty function formulation (4)
always has a solution with the form specified in (7) and (8),
and exponenital parametery∗ which is bounded as a function
of σ.

Theorem 4.2:There exists a vectorw∗, with components
defined by (7) and (8), that solves (4). The parametery∗ ∈
∂(σ‖Aw∗ − b‖p).

Proof: The feasible set of (4) is nonempty, and the level
setsSw0 = {w | I(w; q) ≤ I(w0; q)} are closed and bounded.
Hence, the strict convexity ofI implies that there exists a
unique solutionw∗ to (4). Moreover, the constraints1T w = 1
are linear so that, by [26, Theorem 14.6.1], there exist a vector
y∗ ∈ ∂(σ‖Aw∗ − b‖p) and a scalarζ∗ such that(w∗, ζ∗, y∗)
satisfies the first-order optimality conditions (13).

The form of the solutionw∗ can be derived in the same
manner as (11).

Note that the conditiony∗ ∈ ∂(σ‖Aw∗ − b‖p) imposes an
implicit bound on the magnitude ofy∗. With the definition
of the dual norm, the subdifferential ofσ‖Aw − b‖p can be
equivalently stated (see [26, Chapter 14]) as

∂(σ‖Aw−b‖p) = {y | yT (Aw−b) = σ‖Aw−b‖p, ‖y‖D ≤ σ},
(14)

and soσ provides a bound on the dual norm ofy∗. This creates
a bound on the exponential decay of the solutionw∗ by virtue
of (11).

The exact penalty function formulation is exact in the
following sense: for all values of the penalty parameter over a
certain threshold value, KKT points of (5) are also stationary
points of its exact penalty function formulation.

Theorem 4.3:Let w∗ be a solution of (5), with correspond-
ing Lagrange multipliersζ∗ andy∗ (see Theorem 2.3). Then
for everyσ > ‖y∗‖D, w∗ is also a minimizer of (4).

Proof: This result follows immediately from Theorem
14.3.1 in [26].

C. The`1-penalty function

When the penalty function of (4) uses the`1 norm, its
objective is discontinuous over sets of hyperplanes. However,
there is a common device in the optimization literature for
reformulating it as an equivalent and smooth problem (see,
for example, [27, Theorem 4.8] and [28, Section 4.2.3]). We
introduce a setelastic variablesr, s ≥ 0, and rewrite (5) as

minimize
w,r,s

I(w; q) + σ1T (r + s)

subject to 1T w = 1
Aw + r − s = b

r, s ≥ 0.

(15)

The solution of (15) is a 5-tuple(w∗, r∗, s∗, ζ∗, y∗) that
satisfies the first-order KKT conditions

1T w = 1 (16a)

Aw + r − s = b (16b)

∇wI(w; q) + ζ1 + AT y = 0 (16c)

min(r, σ1− y) = 0 (16d)

min(s, σ1 + y) = 0. (16e)

The last two conditions (16d)–(16e) imply that their arguments
are nonnegative, so thatσ1 ≥ y ≥ −σ1. This pair of
inequalities can be conveniently restated as

‖y‖∞ ≤ σ. (17)

Note that the`1 and `∞ norms are dual to each other, so
that (17) is equivalent to‖y‖D ≤ σ (see (14)).

Lemma 4.4:Suppose that(w∗, r∗, s∗, ζ∗, y∗) is a solution
of (16) with σ > 0. Then r∗ and s∗ are componentwise
complementary; that is,r∗i s∗i = 0, for i = 1, . . . , d.

Proof: Setzr = σ1− y∗ andzs = σ1 + y∗. Then

zr + zs = 2σ1 > 0 (18)

becauseσ > 0 by hypothesis. Note that (16d)–(16e) imply
that

r∗i zr
i = s∗i z

s
i = 0. (19)

Now suppose thatr∗i > 0. Multiplying the ith component
of (18) by r∗i yields r∗i zs

i > 0. Hencezs
i > 0, and from (19),

we haves∗i = 0. By analogous argument,s∗i > 0 implies
r∗i = 0. Thenr∗i s∗i = 0, as required.

Theorem 4.5 (Exponential form):Let σ be a positive con-
stant. Suppose that(w∗, r∗, s∗, ζ∗, y∗) is a solution of (15).
Let A,A+,A− be index sets such that

(Aw)i = b, i ∈ A
(Aw)i > b, i ∈ A+

(Aw)i < b, i ∈ A−.

Then
w∗j =

uj∑k
j=1 uj

,

where

uj = qj exp


∑

i∈A
aijy

∗
j + σ

∑

i∈A+

aij − σ
∑

i∈A−
aij


 . (20)

Proof: Because (15) and (4) are equivalent,w∗ must
have the form specified by (7)–(8).

Now we consider the values that eachy∗i may have. Ifi ∈
A+, then(Aw∗)i > b, and (16b) together with (16d) implies
that0 ≤ r∗i < s∗i . By Lemma 4.4, we must haver∗i = 0. Then
from (16e) we deduce thaty∗i = −σ. By analogous argument,
y∗i = σ for i ∈ A−. For i ∈ A, (Aw∗)i = b, and by (16b),
r∗i = s∗i . Lemma 4.4 then impliesr∗i = s∗i = 0, and so we
have from (16d)–(16e) thatσ ≥ y∗i ≥ −σ. In summary, we
may now writeaT

j y∗ as

aT
j y∗ =

∑

i∈A
aijy

∗
j + σ

∑

i∈A+

aij − σ
∑

i∈A−
aij , (21)

for eachj = 1, . . . , k. Substituting (21) into (8), we see that
w∗j has the required form.
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[3] I. Csisźar, “Why least squares and maximum entropy? An axiomatic
approach to inference for linear inverse problems,”The Annals of
Statistics, vol. 19, no. 4, pp. 2032–2066, 1991.

[4] T. Cover and J. Thomas,Elements of Information Theory. United States
of America: John Wiley and Sons, 1991.

[5] N. Wu, The Maximum Entropy Method. Berlin: Springer-Verlag, 1997.
[6] G. Erickson and C. R. Smith,Maximum Entropy and Bayesian Methds

in Science and Engineering. U.S.A.: Kluwer Academic Publishers,
1988.

[7] L. L. Campbell, “Minimum cross-entropy estimation with inaccurate
side information,”IEEE Trans. Inform. Theory, vol. 45, no. 7, pp. 2650–
2652, November 1999.

[8] R. Gallager,Information Theory and Reliable Communication. New
York: John Wiley and Sons, 1968.

[9] M. Gupta, R. M. Gray, and R. Olshen, “Nonpara-
metric supervised learning with reduced bias,” Sub-
mitted for possible publication. Preprint available at
www.ee.washington.edu/people/faculty/guptamaya/GGO03.pdf, 2003.

[10] C. Stone, “Consistent nonparametric regression,”The Annals of Statis-
tics, vol. 5, no. 4, pp. 595–645, 1977.

[11] E. T. Jaynes, “Information theory and statistical mechanics,”Physical
Review, vol. 106, pp. 620–630, 1957.

[12] J. P. Burg, “Maximum entropy spectral analysis,”37th Annual Interna-
tional Meeting of the Society of Exploratory Geophysics, 1967.

[13] J. Navaza, “The use of non-local constraints in maximum-entropy
electron density reconstruction,”Acta Crystallographica, pp. 212–223,
1986.

[14] T. Jaakkola, M. Meila, and T. Jebara, “Maximum entropy discrimina-
tion,” Advances in Neural Information Processing Systems 12, 1999.

[15] J.-F. Bercher, G. LeBesnerais, and G. Demoment, “The maximum
entropy on the mean method, noise, and sensitivity,”Maximum Entropy
and Bayesian Methods, pp. 223–232, 1996.

[16] H. Gzyl and Y. Velasquez, “Maxentropic interpolation by cubic splines
with possibly noisy data,”Bayesian Inference and Maximum Entropy
Methods in Science and Engineering: 20th International Workshop, pp.
216–228, 2001.

[17] G. L. Besenerais, J.-F. Bercher, and G. Demoment, “A new look
at entropy for solving linear inverse problems,”IEEE Trans. Inform.
Theory, vol. 45, pp. 1565–1577, 1999.
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